New evidence for Cu-decorated binary-oxides mediating bacterial inactivation/mineralization in aerobic media.

نویسندگان

  • S Rtimi
  • C Pulgarin
  • M Bensimon
  • J Kiwi
چکیده

Binary oxide semiconductors TiO2-ZrO2 and Cu-decorated TiO2-ZrO2 (TiO2-ZrO2-Cu) uniform films were sputtered on polyester (PES). These films were irradiated under low intensity solar simulated light and led to bacterial inactivation in aerobic and anaerobic media as evaluated by CFU-plate counting. But bacterial mineralization was only induced by TiO2-ZrO2-Cu in aerobic media. The highly oxidative radicals generated on the films surface under light were identified by the use of appropriate scavengers. The hole generated on the TiO2-ZrO2 films is shown to be the main specie leading to bacterial inactivation. TiO2-ZrO2 and Cu-decorated TiO2-ZrO2 films release Zr and Ti <1ppb and Cu 4.6ppb/cm(2) as determined by inductively coupled plasma mass spectrometry (ICP-MS) This level is far below the citotoxicity permitted level allowed for mammalian cells suggesting that bacterial disinfection proceeds through an oligodynamic effect. By Fourier transform attenuated infrared spectroscopy (ATR-FTIR) the systematic shift of the predominating νs(CH2) vibrational-rotational peak making up most of the bacterial cell-wall content in C was monitored. Based on this evidence a mechanism suggested leading to CH bond stretching followed by cell lysis and cell death. Bacterial inactivation cycling was observed on TiO2-ZrO2-Cu showing the stability of these films leading to bacterial inactivation.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Accelerated Antibacterial Inactivation on 2D Cu-Titania Surfaces: Latest Developments and Critical Issues

This review focuses on Cu/TiO2 sequentially and Cu-TiO2 co-sputtered catalytic/photocatalytic surfaces leading to bacterial inactivation discussing their stability, synthesis, adhesion and antibacterial kinetics. The intervention of TiO2, Cu and the synergic effect of Cu and TiO2 on films prepared by a colloidal approach and other techniques is also reviewed leading to bacterial inactivation. P...

متن کامل

Recent Developments in Accelerated Antibacterial Inactivation on 2D Cu-Titania Surfaces under Indoor Visible Light

This review focuses on Cu/TiO2 sequentially sputtered and Cu-TiO2 co-sputtered catalytic/photocatalytic surfaces that lead to bacterial inactivation, discussing their stability, synthesis, adhesion, and antibacterial kinetics. The intervention of TiO2, Cu, and the synergic effect of Cu and TiO2 on films prepared by a colloidal sol-gel method leading to bacterial inactivation is reviewed. Proces...

متن کامل

Geology, alteration, mineralogy and geochemistry of Cheshmeh Zagh Cu±Au occurrence, Khorasan Razavi province: probably evidence of volcanic massive sulfide mineralization

The Cheshmeh Zagh area is located on Khorasan Razavi Province, the southern parts of the Sabzevar zone, which is one of the most important metallogeny zones of Iran. Lithologically, the area includes a variety of Late Cretaceous volcanic rocks (dacite to basalt), intrusions (gabbro to synogranite), Oligo-Miocene sedimentary rocks, and Quaternary sediments. Alteration zones of propylitic, chlori...

متن کامل

Comparison of Binary and Ternary ‎Compositions of Ni-Co-Cu Oxides/VACNTs ‎Electrodes for Energy Storage Devices with ‎Excellent Capacitive Behaviour

   Electrochemical performance of binary and ternary oxides composed of Ni, Co and Cu produced over a 3-dimensional substrate of vertically aligned carbon nano-tubes (VACNT) as electrodes for aqueous energy sources, is reported and compared in this paper. VACNTs were fabricated inside a DC-plasma enhanced chemical vapor deposition chamber and composite materials fabricated by thermal decomp...

متن کامل

Beneficial effect of Cu on Ti-Nb-Ta-Zr sputtered uniform/adhesive gum films accelerating bacterial inactivation under indoor visible light.

This article presents the evidence for the significant effect of copper accelerating the bacterial inactivation on Ti-Nb-Ta-Zr (TNTZ) sputtered films on glass up to a Cu content of 8.3 at.%. These films were deposited by dc magnetron co-sputtering of an alloy target Ti-23Nb-0.7Ta-2Zr (at.%) and a Cu target. The fastest bacterial inactivation of E. coli on this later TNTZ-Cu surface proceeded wi...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Colloids and surfaces. B, Biointerfaces

دوره 144  شماره 

صفحات  -

تاریخ انتشار 2016